STEREOCONTROLLED SYNTHESIS OF SEGMENTS FOR THE SYNTHESIS OF TYLONOLIDE BY USING A RELATIVE 1,2-ASYMMETRIC INDUCTION

Yasunori KITANO, Masato KUSAKABE, Yuichi KOBAYASHI, and Fumie SATO*

Department of Chemical Engineering, Tokyo Institute of Technology,

Meguro, Tokyo 152

Two precursors corresponding to the C(1)-C(9) and C(13)-C(17) portions of tylonolide were synthesized in which all the chiral centers were induced correctly from the only one stereocenter existing in 2-methy-3-trimethylsilylbut-3-enal and 2-benzyloxy-methyl-3-trimethylsilylbut-3-enal, respectively.

We have recently developed a new method for the stereocontrolled synthesis of optically active acyclic molecules which is based on a highly diastereoselective addition reaction of nucleophiles to α -alkyl- β -trimethylsilyl- β , γ -unsaturated carbonyl compounds. Using this method, we have synthesized some natural products such as blastmycinone, serricornin, ocrynomycolic acid, and intermediates for the synthesis of erythronolide A^5 and A^6 -deoxyerythronolide A^6 . Herein we describe our effort to the synthesis of the aglycone of the medically important 16-membered ring macrolide antibiotic tylosin, tylonolide (1), which has an unique structural and stereochemical feature absent in the macrolide selected earlier as our synthetic targets. A retrosynthetic analysis of 1 similar to those applied earlier dissects 1 into three fragments: the left-hand [C(13)-C(17)] 2, olefinic part [C(10)-C(12)], and the right-hand [C(1)-C(9)] 3. We considered the aldehydes 4 and \mathcal{I}^{1c} as starting compounds for the synthesis of 2 and 3, respectively (Scheme 1).

(a) BnOCH₂CH₂CO₂BHT, LDA; (b) LiAlH₄; (c) TsCl, C₅H₅N; (d) KI; (e) EtCOCl; (f) KN(SiMe₃);

(g) LiAlH₄; (h) t BuMe₂SiCl; (i) TBHP, VO(acac)₂; (j) t BuOK; (k) CH₂=C(SiMe₃)MgBr, CuI; (l) n Bu₄NF;

(m) NaH, HMPA; (n) $Me_2C(OMe)_2$, pTsOH; (o) $tBuMe_2SiCl$; (p) O_3 , MeOH, Me_2S then $LiAlH_4$

HO

OH

$$a,b$$

HO

OTT

 c,d,e

OH

 f,g,h,i,j

OCOBUT

Me₃Si

OH

OH

 f,g,h,i,j

OCOBUT

OCOBU

Scheme 3.

(a) TrCl, Et₃N; (b) TBHP, VO(acac)₂; (c) CH₂=C(SiMe₃)MgBr, CuI; (d) t BuCOCl; (e) Cl₂CHCO₂H; (f) Me₂C(OMe)₂, PPTS; (g) LiAlH₄; (h) PhCH₂Br, NaH; (i) HCl; (j) NaIO₄; (k) EtMgBr, Et₂O, -78°C; (l) NaH, HMPA.

Synthesis of the right-hand fragment 3 (Scheme 2): Addition of the lithium enolate derived from BHT ester of 4-benzyloxybutanoic acid to the aldehyde 7 (>95% ee) proceeded diastereoselectively as in the case of BHT ester of propionic $\operatorname{acid}^{\operatorname{1d}}$ to give the aldol which upon reduction with LiAlh_4 afforded the diol $\stackrel{6}{\cancel{5}}$ ([α]_D²⁵ -4.86° (c 1.44, CHCl₃)) as the sole product (81%). The diol 6 was transformed into $\frac{8}{8}([\alpha]_D^{25} + 8.87^{\circ} (c 1.08, CHCl_3))$ by tosylation, displacement with KI, and esterification with propionyl chloride in 57% yield. Intramolecular alkylation with KN(TMS), provided a mixture of the lactones 9a and 9b in 76% yield. Without separation, the mixture of the lactones was reduced with $LiAlH_4$ to give rise to 10a (37%) and the corresponding epimeric diol 10b (58%), which could be easily separated by gravity column chromatography on silica gel: 10a, $R_f = 0.77$; 10b, $R_f = 0.43$ (1 : 1, hexane-Et₂0).⁹ undesired isomer 10b was transformed to a 1 : 1 mixture of the diols 10a and 10b by a three-step sequence of lactonization, epimerization, and reduction (71% yield), thus 10b could be recycled to the desired compound 10a. The remaining chiral center at C(3) of 3 was introduced selectively as follows. Epoxidation (TBHP, VO(acac)2) of the alcohol 11 derived from 10a by selective protection proceeded diastereoselectively to afford 5 (96%) as the sole product. 6) Treatment of 5 with t-BuOK caused the 1,4-SiMe3 group shift to give the corresonding silyl ether, 2,6) which on reaction with 1-trimethylsilylvinylmagnesium bromide led to 12. The transformation of 12 into 13 ([α]_D²⁵ +13.4° (c 1.21, CHCl3)) was achieved in a straightforward fashion. The total yield of 13 from 5 was 60%. Finally, conversion of 13 into the silyl ether followed by ozonolysis and subsequent reduction afforded 3 ($[\alpha]_D^{25}$ +6.16° (c 0.55, CHCl₃)) in 65% yield. 10)

Synthesis of the left-hand fragment 2 (Scheme 3): The required aldehyde 4 was synthesized as follows. Monotritylation of 14 followed by epoxidation (TBHP, VO(acac)₂) gave 15 (43%). Epoxide ring opening reaction of 15 with 1-trimethylsilylvinylmagnesium bromide^{1c)} followed by esterification with pivaloyl chloride and deprotection gave 16, from which 4 was prepared in a straightforward fashion in good yield. Reaction of EtMgBr with 4 proceeded stereoselectively to give the syn alcohol 17 in 87% yield. No anti isomer was detected. Finally protodesilylation¹¹⁾ of 17 using NaH in HMPA furnished 2 (69%).

We thank the Asahi Glass Foundation and the Kawakami Memorial Foundation for financial support.

References

1) a)F. Sato, M. Kusakabe, and Y. Kobayashi, J. Chem. Soc., Chem. Commun., 1984, 1130; b) F. Sato, Y. Takeda, H. Uchiyama, and Y. Kobayashi, ibid., 1984, 1132; c) Y. Kobayashi, Y. Kitano, and F. Sato, ibid., 1984, 1329; d) F. Sato, M. Kusakabe, T. Kato, and Y. Kobayashi, ibid., 1984, 1331.

- 2) H. Uchiyama, Y. Kobayashi, and F. Sato, Chem. Lett., 1985, 467.
- 3) Y. Takeda, Y. Kobayashi, and F. Sato, Chem. Lett., 1985, 471.
- 4) Y. Kitano, Y. Kobayashi, and F. Sato, J. Chem. Soc., Chem. Commun., 1985, 498.
- 5) A. K. Samaddar, T. Chiba, Y. Kobayashi, and F. Sato, J. Chem. Soc., Chem. Commun., 1985, 329.
- 6) Y. Kobayashi, H. Uchiyama, H. Kanbara, and F. Sato, J. Am. Chem. Soc., <u>107</u>, 5541 (1985).
- 7) R. L. Hamill, M. E. Haney, Jr., M. Stamper, and P. F. Wiley, Antibiot. Chemother. (Washington, D. C.), 11, 328 (1961); S. Omura, H. Matsubara, A. Nakagawa, A. Furusaki, and T. Matsumoto, J. Antibiot., 33, 915 (1980).
- 8) a) K. Tatsuta, Y. Amemiya, Y. Kanemura, and M. Kinoshita, Tetrahedron Lett., 22, 3997 (1981); b) L. D.-L. Lu, ibid., 23, 1867 (1982); c) S. Masamune, L. D.-L. Lu, W. P. Jackson, T. Kaiho, and T. Toyoda, J. Am. Chem. Soc., 104, 5523 (1982); d) A. J. Pearson, Md. N. I. Khan, J. C. Clardy, and He. Cun-heng, ibid., 107, 2748 (1985) and references cited therein.
- 9) Both epimers 10a and 10b were transformed into the lactones i and ii, respectively, via a three-step sequence [(1) KH, HMPA; (2) Ag₂CO₃, Celite; (3) O₃, MeOH then SMe₂]. ¹H NMR spectrum of i is identical with that reported by Masamune. ^{8c)}

OHC
$$\begin{array}{c}
0 & R^1 \\
R^2 \\
\hline
0 & R^1
\end{array}$$
OBn
$$\underline{i}, R^1 = Me, R^2 = H$$

$$\underline{i}, R^2 = H, R^2 = Me$$

10) The stereochemistry of 3 was confirmed by transformation of 13 into the known compound iii 8c) by oxidation (PDC, DMF) followed by ozonolysis (03, MeOH then H2O2, HCOOH).

$$13 \longrightarrow HO_2C \longrightarrow OH O \longrightarrow OBn$$

11) F. Sato, Y. Tanaka, and M. Sato, J. Chem. Soc., Chem. Commun., 1983, 165.

(Received January 17, 1986)